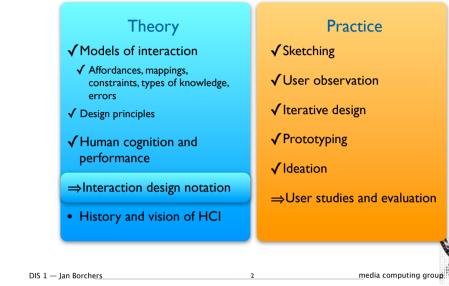
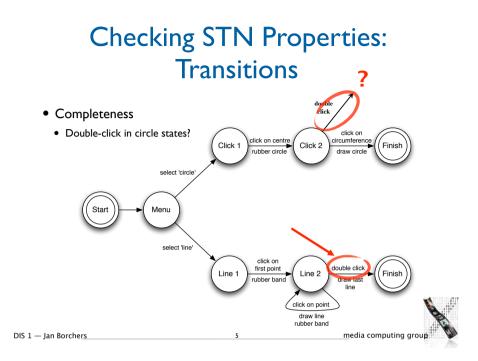

Review

- Pros and cons of production rules?
- Advantages of controlled experiments over other methods?
- Six steps of controlled experiments?
- Two types of variables?
- Two types of hypotheses?
- Two types of experimental designs? Pros & cons?
- How can the order of treatments affect the experiment?
- How can you prevent their interference?
- Four types of validity?
- Reliability?

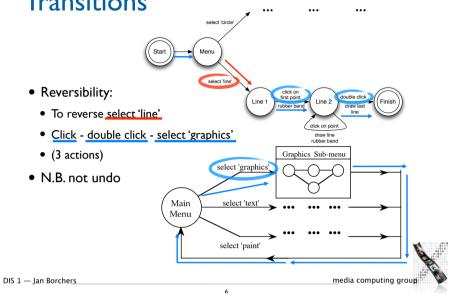

DIS 1 — Jan Borche<u>rs</u>

• Describes sequences of user actions and system responses

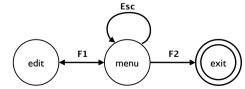
media computing group


Checking STN Properties: Transitions

- Completeness
- Missed arcs
- Unforeseen circumstances
- Determinism
- Several arcs for one action Deliberate: application decides Accidental: production rules
- Nested escapes
- Consistency


- Same action, same effect?
- Modes and visibility

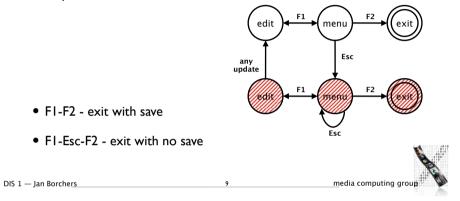
Checking STN Properties: Transitions

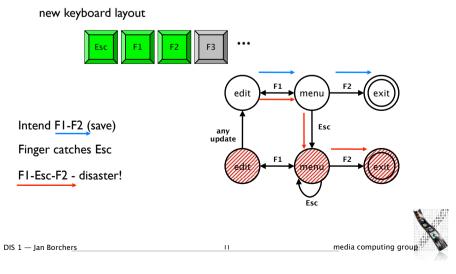


Checking STN Properties: States

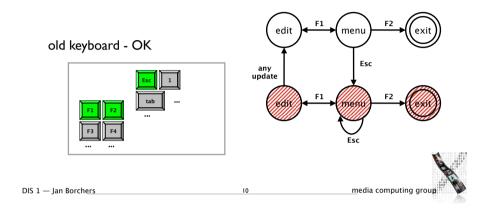
- Reachability
- Can you get anywhere from anywhere?
- How easily
- Reversibility
- Can you get to the previous state?
- But NOT undo
- Dangerous states
- Some states you don't want to get to

- Word processor: two modes and exit
 - FI changes mode
 - F2 exit (and save)
 - Esc no mode change


• But ... Esc resets autosave



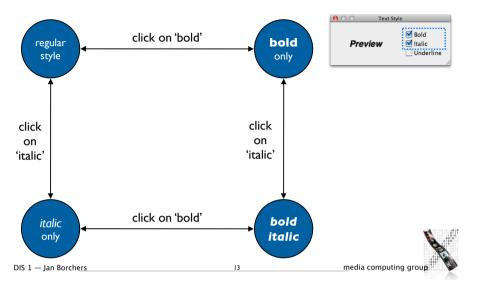
Dangerous States Example


- Exit with/without save \Rightarrow dangerous states
- Duplicate states semantic distinction

Dangerous States Example: Layout Matters

Dangerous States Example: Layout Matters

STNs: 000 Text Style State Explosion M Bold 🗹 Italic Preview Underline

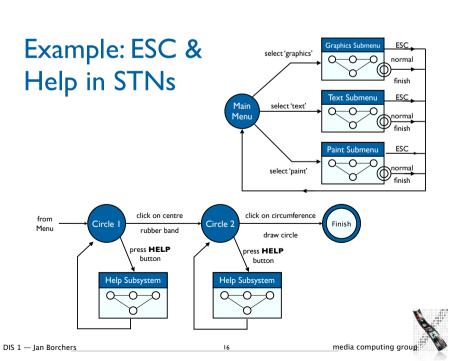

• STNs fail when describing dialogs with several concurrent parts

12


- Example: Simple dialog to select bold, italics, and/or underline
- What does the state diagram look like?

Bold & Italic Combined

All Three Options


STNs: State Explosion

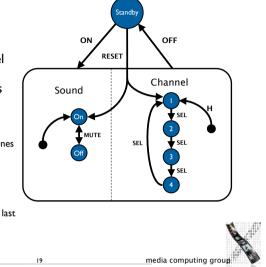
- Problem: Combining two concurrent STNs with *N* and *M* states leads to new STN with *N* × *M* states
- STN hides clear structure of the dialog
- Especially problematic with modern GUIs
- Similar problems with "Escape" and "Help" options
- ESC can be modeled as special second "Finish" exit active throughout subdialog
- Help can be modeled as little subdialog hanging off every single state in the STN

15

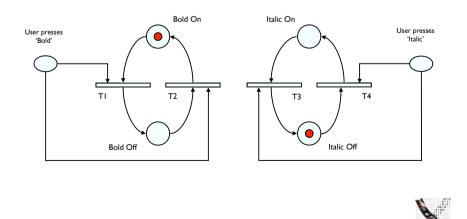
• Gets messy

Petri Nets

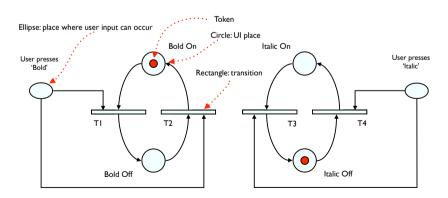
- Better approach to dialogs that have several states at once
- But not better for sequential dialogs and mutually exclusive UI elements (radio buttons)
- Relatively old formalism to model concurrency
- In-class exercise: Draw the Petri net for our dialog box with concurrent "Bold" and "Italic" options
 (ignore "Underline" for now)
 Image: Concurrent Style


media computing group

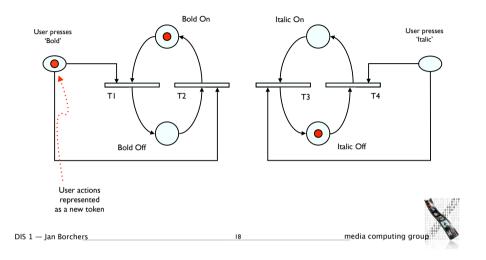
State Charts

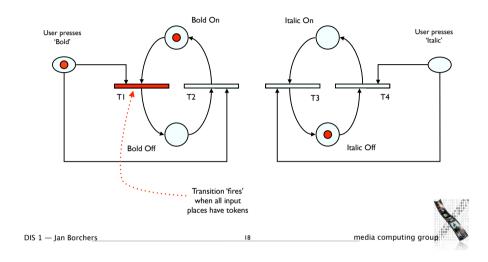

- By Harel; used in UML
- Example: TV Control Panel
- State Charts extend STNs
- Hierarchy
- Concurrent sub-nets ON resumes both state machines
- Escapes OFF always active
- History

DIS 1 — Jan Borchers

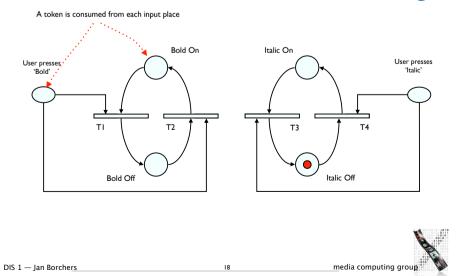

Link marked "H" goes back to last state on re-entering subdialog

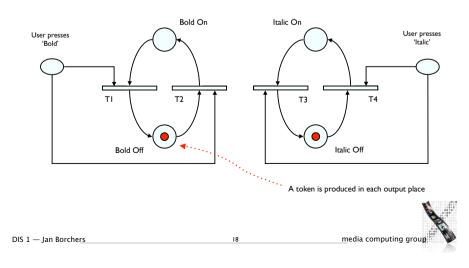
Petri Net For "Bold & Italic" Dialog


Petri Net For "Bold & Italic" Dialog



DIS 1 — Jan Borchers

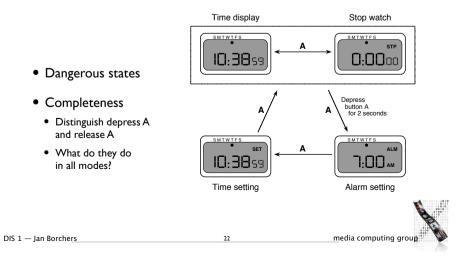

Petri Net For "Bold & Italic" Dialog


Petri Net For "Bold & Italic" Dialog

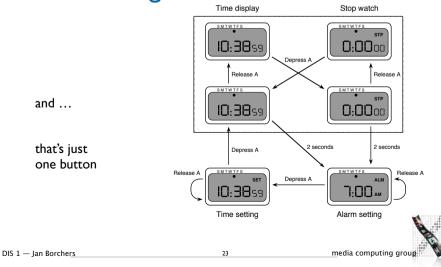
Petri Net For "Bold & Italic" Dialog

Petri Net For "Bold & Italic" Dialog

Diagrams For User Documentation


Digital Watch – User Instructions

- Some dialog descriptions are clear enough to serve as user documentation (similar to GOMS)
- Especially if description uses screen shots and is semi-formal


Time display Stop watch SMTWTFS SMTWTES STP 10:38ss 0:00:00 • Two main modes Limited interface Depress button A • 3 buttons for 2 seconds • Button A changes mode SMTWTFS SMTWTFS SET Α 10:38ss Time setting Alarm setting DIS 1 — Jan Borchers media computing group

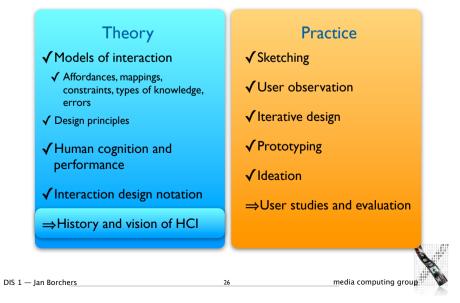
Digital Watch – User Instructions

Digital Watch: Designers Instructions

Semantics - Raw Code

	<pre>switch (ev.type) { case button_down:</pre>
• Event loop for word processor	<pre>if (in_text (ev.pos)) { mode = selecting; mark_selection_start(ev.pos);</pre>
	}
 Dialogue description 	<pre> case button_up: if (in_text (ev.pos)</pre>
Very distributed	<pre>&& mode == selecting) { mode = normal; mark_selection_end(ev.pos);</pre>
• Syntactic/semantic trade-off	} case mouse_move:
Terrible!	<pre>if (mode == selecting) { extend_selection(ev.pos); }</pre>
	 } /* end of switch */
DIS 1 — Jan Borche <u>rs</u>	24 media computing group

Further Reading



• Alan Dix et al.: Human-Computer Interaction, 3rd ed. (2003), Chapter 16

Radically New Interface

Three Lessons from HCI History

"Picasso knew everything about art history, because he had to know the rules before he could break them."

— Bill Buxton, CHI 'I I

• "Without history, we are all lost." — Bill Buxton, CHI 'I I

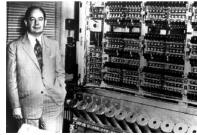
- No Single Hero: Even interfaces that seem "radically new" build on many previous iterations (mouse, touch screens,...)
- Forces Shift During Technology Phases: New technologies create technical solutions for geeks, then usability becomes more important as technology matures, until it over-saturates unfortunately this usually repeats itself with new technologies

3

Pre-Computing

- Abacus (Babylon, ~1000 BC)
- First known mechanical calculating aid
- Da Vinci's mechanical calculator (1500s)
- First design of mechanical calculator
- Pascal's Arithmetic Machine (1642)
- First working model, +/-
- ~ Leibniz, Schickard
- Driving force
 - Early: direct representation of conceptual model
 - Later: increasing level of abstraction

media computing group

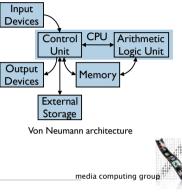


First Computers

- Plugboards (e.g., ENIAC 1946)
- Just data, no program memory

Von Neumann in front of ENIAC, 1946

IBM 557 plugboard and resistor plugs, ca. 1965



DIS 1 — Jan Borchers

First Computers

- Von Neumann architecture (1945)
- Key: Defined basic components of today's computer, storing instructions in memory
- ~ Zuse ZI-Z4 (1936-45)

- Mainframes & Batch Processing
- Prepare data on punch cards—submit—wait for result as printout offline
- Main mode on mainframes of 60's & 70's
- Efficient use of machine, no waiting for human input
- "0-D user interface" [Nielsen'93]
- Single point in time for submission of the batch job as a single unit

Transaction Systems

32

• 3270 Terminals

DIS 1 — Jan Borchers

• Key advances: Immediate response for lots of users from distant terminals (for a special-purpose application)

Time Sharing

- Key advances: Provide general purpose interactive response efficiently to many users simultaneously with one computer
- Dartmouth Basic early 1960s
- MIT CTSS/ITS/Unix etc.
- Teletypes

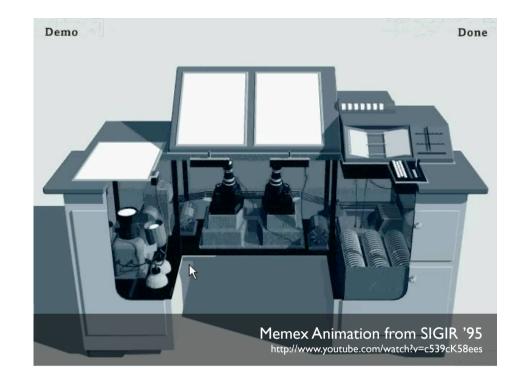
DIS 1 — Jan Borchers

- Glass teletypes
- Addressable character Terminals
- Command-line interfaces
- "I-D interfaces" [Nielsen'93]
- User can interact on the single line before press SEND
- Hit return and cannot modify the input anymore

media computing group

Memex: A Vision of Computer

- Vannevar Bush."As We May Think", The Atlantic Monthly, July 1945
- Memex is a device in which:
- Stores all individual's books, records, and communications
- May be consulted with exceeding speed and flexibility
- Predicted: Hypertext, PC, Internet, WWW, Speech recognition, Online encyclopedias


DIS 1 — Jan Borchers

Radar Systems

- Example: SAGE Air Defense (MITRE, 1963)
- Key advances: Real-time response for complex (but specific) tasks, including graphics

media computing group

Sketchpad (Sutherland, 1963) Video assignment

- First interactive computer graphics program
- Key advances: Techniques for direct manipulation of graphics on a screen, including constraint satisfaction

Telefunken's Rollkugel (October 1968)

- Optional input device for SIG-100 monitor
- Rolling mouse to displace cursors, drawing polygons
- Introduced a few weeks before Engelbart's demo

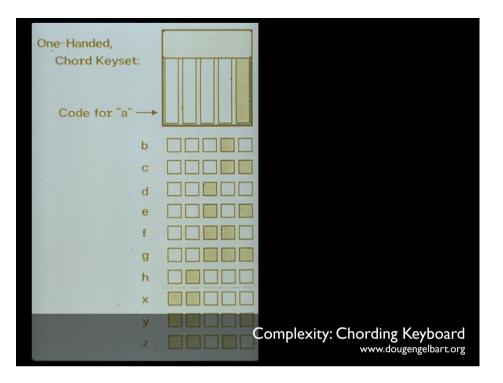
DIS 1 — Ian Borchers

Engelbart's First Mouse (1964)

- Two wheels, wire is on the back, one button
- Won the test when comparing with other pointing devices at the time:
 - Light pen, tracking balls, foot-pedal, knee-operated devices, head-operated devices

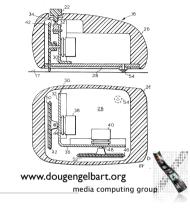
www.dougengelbart.org media computing group

DIS 1 — Jan Borchers


NLS: oNLine System (Engelbart, 1968)

- Word processing and linking
- Key advances: Mouse, hyperlinking, direct manipulation of text, outlining, word processing, multi-function integration
- Focused on enhancing expert performance, not on initial ease of use
- Failed in user tests because of its complexity
- Perfect for trained users with 4 hands :) [Moggridge, 2007]

www.dougengelbart.org


Mouse in NLS Demo

- Two wheels, three button
- Click
- Command accept
- Command delete (undo)
- E.g., Delete

DIS 1 — Jan Borchers

- Chord: d (3rd key)
- Mouse: point at the beginning + click
- Mouse: point at the end + click
- Mouse: command accept

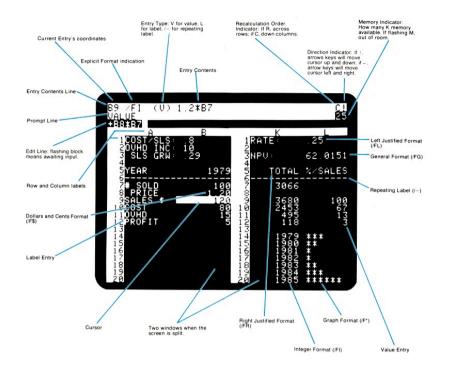
Early Hobbyist PCs & Games

п

- Atari PONG (Bushnell, 1972)
- MITS Altair (1975)
- Key advances: Machines cheap enough to be used by someone other than government and big business or research labs

Early Personal Computers

47


45

• Apple II, 1977

• Key advances: First general purpose personal

computer used widely in business (because of VisiCalc)

Early Personal Computers

- IBM PC, 1981
- Key advances: Making the PC respectable to business in general by putting the IBM label on it
- Features
- Character terminal
- Text UI standards (IBM CUA)
- Graphics: non-standard

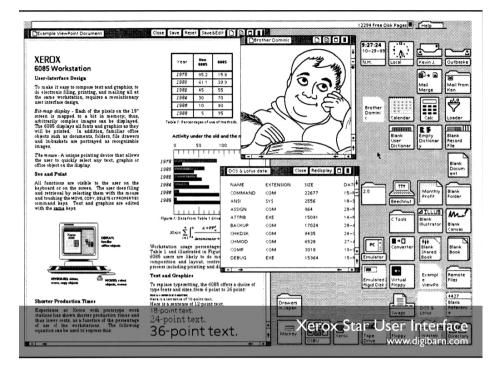
DIS 1 — Jan Borche <u>rs</u>	49	media computing group

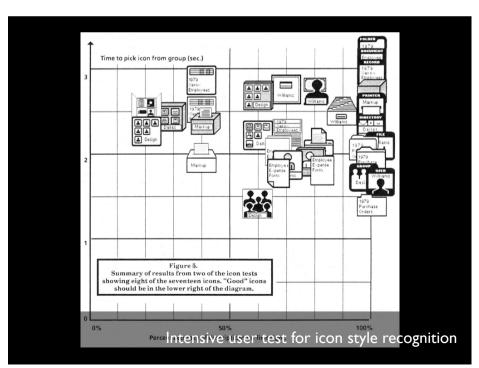
111

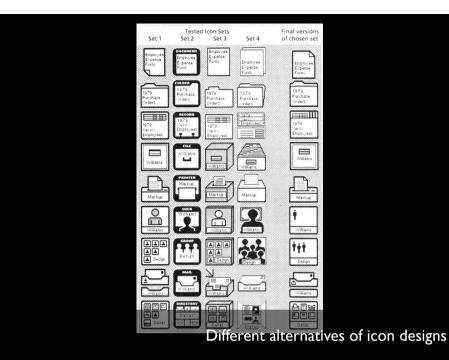
Xerox Alto (PARC, 1973)

50

- Bitmap Displays & GUIs
- 2.5MB removable HD (pre-floppy), 128-256K RAM, 600x800, mouse, Ethernet, not commercialized
- Smalltalk platform, Bravo WYSIWYG editor, email
- Key advances: Menus, windows, pointing, dragging, etc., as we now know them


Xerox Star (1981)


51


- Introduced windows commercially, \$17K
- Key advances: Integrated networked document environment, WYSIWYG text editing, icons, property sheets, window management, ...
- Built to improve Alto
- Unique design process (8 years of prototyping)
- "2.5-D interfaces" [Nielsen'93]
- Interacting with 2D display + overlapping windows

Xerox Star keyboard and mouse www.digibarn.com

Star: Design Lessons

 \checkmark Design first, then code

- ✓ Objects & Actions
- **√**Detail
- ✓ Graphic designers
- √DIA cycle

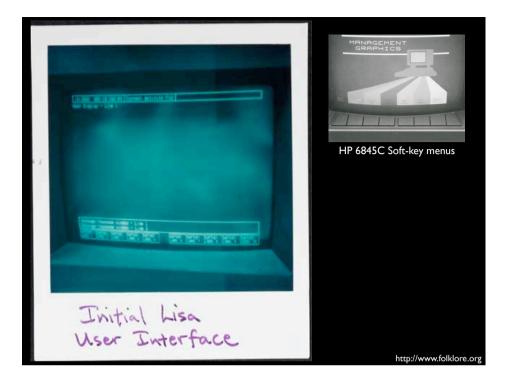
DIS 1 — Jan Borchers

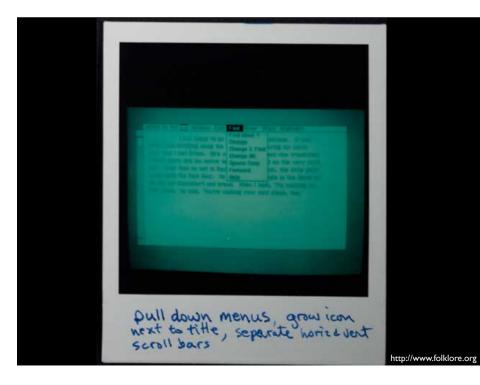
But:

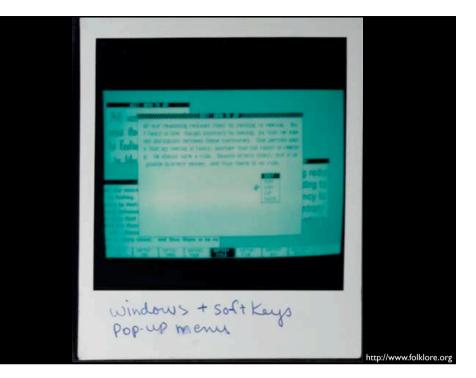
Apple Lisa (1983)

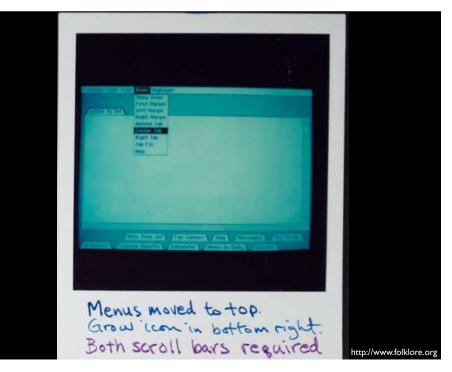
- Apple's first bitmapped-GUI computer
- Inspired by Alto (not Star)
- I-button mouse
- Key advances:
- Menu bar (instead of pop-up menus)
- But: underpowered, bad marketing (\$10K)

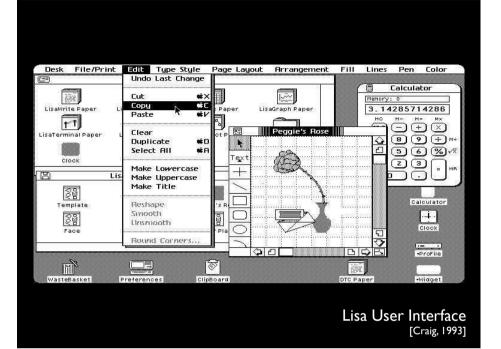
media computing group




DIS 1 — Jan Borchers


Bill Atkinson (Night shift: design & code prototypes) Photos: www.wired.com, www.designinginteractions.com/




Larry Tesler (Day shift: user tests)

New Feature in

Mac OS X Lion (2011)

67

- Auto Save: Versions of documents are automatically saved.
 - Never lost hours of work after forgetting to save
- Resume: Restarting Mac or Application brings back the documents you opened
- Guess what? Lisa had these features since 1983!
 - Got lost in Mac due to hardware/software limitation at the time

DIS 1 — Jan Borchers

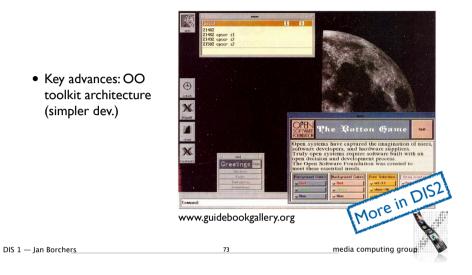
media computing group

Apple Macintosh (1984)


• Lisa follow-up

- Key advances:
- First commercially successful WIMP system, \$2500
- GUI affordable to huge new user community
- Targeted at hobbyists, not just office use
- Most consistent commercial WIMP UI Macintosh Human Interface Guidelines Apple Evangelists
- MacPaint & Quickdraw now open source
- (http://www.computerhistory.org/highlights/macpaint/)

DIS 1 — Jan Borche<u>rs</u>



Microsoft Windows (1985)

• Key advances: Bringing Alto/Star/Mac interaction style to huge populations of DOS and Unix computers

	MS-DOS Executive							
	File View Special							
GB CA CA CA CL	ABC I Long CALC. CALEN CALEN CARDF Programs	AWINDOW DL.EXE FON FON FON FON S.TXT	S HELVA.FON HELVB.FON HELVC.FON HELVD.FON IBMGRX.DRU MODERN.FON	MSDOS.EXE Notepad.exe Paint.exe Practice.wri Readme.txt Readme.txt	ROMAN.FON Script.fon Spooler.exe Terminal.exe TMSRA.fon TMSRB.fon	TMSRC.FON TMSRD.FON WIN.COM WIN.INI WIN100.BI WIN100.OV		
		Control Panel 1 Preferences						
		_ Tim 11:3		Date 3-09-03 Double Click Slow Fas TFST	st Đ	More	in DI	52)
DIS 1 — Jan Borcher	s		7	2	www.guideb	ookgallery		

OSF/Motif (1980's)

Reading & Video Assignment

74

- Read "As we may think" by Vannevar Bush
- Watch videos and answer questions
- Sketchpad
- NLS Demo
- Xerox Star
- Links & information will be announced on L²P

